

Course Syllabus Gyanmanjari Science College Semester-1(M.Sc.)

Subject: Clinical Laboratory Biochemistry- MSCMT11501

Type of course: Major

Prerequisite: Students should have a Basic knowledge of biochemistry, human physiology, and lab techniques is required.

Rationale: This subject helps students understand and apply biochemical tests for diagnosing and monitoring diseases in clinical settings.

Teaching and Examination Scheme:

Teaching Scheme			Credits	s Examination Marks					
CI	CI T	T P C	С	Theory	y Marks	4	ctical arks	CA	Total Marks
				ESE	MSE	V	P	ALA	
4	0	0	4	60	30	10	00	50	150

Legends: CI-Class Room Instructions; T – Tutorial; P - Practical; C – Credit; ESE - End Semester Examination; MSE- Mid Semester Examination; V – Viva; CA - Continuous Assessment; ALA-Active Learning Activities.

Continuous Assessment:

Sr. No.	Activity Learning Activity	Marks	
1	Reaction Simulation: Simulate antigen-antibody reactions and upload observations. Upload it into GMIU web portal.		
2	Vaccine Debate: Participate in vaccine roleplay and upload report/video. Upload it into GMIU web portal.	10	
3	Disorder Analysis: Analyze immune disorder cases and upload diagnosis. Upload it into GMIU web portal.	10	
4	Poster Preparation: Students have to prepare poster on Hormonal Biochemistry and need to upload it into GMIU web portal.		
5	Flow Cytometry: Rotate flow cytometry stations and upload report. Upload it into GMIU web portal.	10	
	Total	50	

Course Content:

Unit No	Course content	Hrs	% Weightage
	Fundamentals of Clinical Biochemistry and Laboratory Operations		
	 Introduction to Clinical Biochemistry: Scope, objectives, and significance in medical diagnostics 		
1	 Principles of Clinical Biochemistry Laboratories: Organization, layout, safety, and ethics Specimen Collection: Types of specimens, collection 	15	25
	 techniques, anticoagulants, and preservatives Handling and Storage of Biological Samples: Preanalytical variables, transport, and stability Laboratory Information Systems (LIS): Data handling, 		
	digital records, and integration Metabolic Disorders and Functional Organ		
	Carbohydrate Metabolism Disorders: Pathophysiology, diagnostic markers, and interpretation (e.g., Diabetes Mellitus)		
2	 Lipid Metabolism and Lipid Profile: Hyperlipidemia, atherosclerosis, and biochemical markers Renal Function Tests (RFT): Urea, creatinine, uric acid, clearance tests, and clinical relevance 	15	25
	 Liver Function Tests (LFT): Bilirubin, enzymes (ALT, AST, ALP), proteins, and jaundice differentiation Thyroid Function Tests: T3, T4, TSH assays, hyper- and hypothyroidism 		
	 Acid-Base Balance: Buffer systems, blood gas analysis, and metabolic disorders Electrolyte Analysis: Sodium, potassium, chloride, calcium, and related pathologies 		
	Enzymes, Proteins, and Hormonal Biochemistry in		
3	 Clinical Diagnosis Clinical Enzymology: Enzyme kinetics, diagnostic enzymes (CK, LDH. Amylase, etc.) Plasma Proteins and Protein Electrophoresis: Albumin, globulins, and diagnostic significance 	15	25
	 Hormonal Assays: Principles, techniques (RIA, ELISA), and clinical interpretation Reproductive and Adrenal Hormones: Estrogen, progesterone, cortisol, ACTH, and disorders Interpretation of Biochemical Profiles: Diagnostic 	Ye o	

	Quality Assurance and Clinical Correlation in Biochemistry		
	Quality Assurance and Accreditation: ISO standards, NABL, CAP, and good laboratory practices		
4	Reference Ranges: Establishment, biological variability, and use in interpretation	15	25
	Case-based Clinical Biochemistry: Integration of lab results with clinical scenarios		
	Ethical and Legal Aspects in Clinical Biochemistry: Confidentiality, consent, and report validation		

Suggested Specification table with Marks (Theory):60

			of Theory Mark om's Taxonom			
Level	Remembrance (R)	Understanding (U)	Application (A)	Analyze (N)	Evaluate (E)	Create (C)
Weightage (%)	30%	30%	30%	10%	-	W

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcome:

COI	Elucidate the principles, practices, and digital systems used in clinical biochemistry
	laboratories.
CO2	Interpret biochemical test results related to metabolic and organ function disorders.
CO3	Analyze the clinical significance of enzymes, proteins, and hormones in disease diagnosis.
CO4	Utilize quality assurance principles and interpret biochemical data in clinical case scenarios.

Instructional Method:

The course delivery method will depend upon the requirement of content and the needs of students. The teacher, in addition to conventional teaching methods by black board, may also use any tools such as demonstration, role play, Quiz, brainstorming, MOOCs etc.

From the content 10% topics are suggested for flipped mode instruction.

Students will use supplementary resources such as online videos, NPTEL/SWAYAM videos, ecourses, Virtual Laboratory

Clinical Laboratory Biochemistry- MSCMT11501

The internal evaluation will be done on the basis of Active Learning Assignment

Practical/Viva examination will be conducted at the end of semester for evaluation of performance of students in the laboratory.

Reference Books:

- [1] Biochemistry and Clinical Pathology by Dr. S.B. Bhise
- [2] Lab Tech Clinical Biochemistry by Sathya Publishers.
- [3] Clinical Biochemistry by Nanda Maheshwari.
- [4] Practical Clinical Biochemistry by Prithvi Books.
- [5] Practical Clinical Biochemistry by dnamart.in.

