Course Syllabus Gyanmanjari Diploma Engineering College Semester-1 (Diploma) Subject: Building Blocks of Digital Systems - DET1EE11201 Type of course: Major (Core) **Prerequisite:** Basic understanding of electrical components, circuit fundamentals, logical reasoning, and elementary mathematics. Rationale: This course develops core digital electronics skills by covering logic gates, number systems, Boolean algebra, and circuit design, equipping students to analyze and design real-world digital systems. ## **Teaching and Examination Scheme:** | Te | Teaching Scheme | | | Examination Marks | | Total Marks | |----|-----------------|---|---|-------------------|-----|-------------| | CI | T | P | C | SEE | CCE | | | 4 | 0 | 2 | 5 | 100 | 50 | 150 | Legends: CI-Class Room Instructions; T – Tutorial; P - Practical; C – Credit; SEE - Semester End Evaluation; LWA – Lab Work Assessment; V – Viva voce; CCE-Continuous and Comprehensive Evaluation; ALA- Active Learning Activities. #### Course Content: | Sr.
No | | Course | e Content | | Hrs. | %
Weightage | |-----------|---------|---|---|---------------------------------|--------------|----------------| | 1 | Topics: | nary, Decimal, and Hexades and 2's complement, Biologic gates: AND, OR, NO mbols and truth tables niversal gates – realizational: | decimal conversion
nary addition & su
T, NAND, NOR, | btraction
XOR, XNOR – | T:12
P:06 | 20% | | | Sr. No. | Practical Task | Tools Used | Learning
Outcome | | | | | 1 | Implement basic gates (AND, OR, NOT) and verify truth tables | Digital Trainer
Kit | Learn gate-level circuit wiring | | | | 2 | | Implemer
NOR, XO
XNOR ga
verify trut | ites, and | Digital T
Kit | rainer | Analyze gate
behavior across
environments | | | |------------|-------|---|----------------|----------------------------|--------------------------|--|--------------|-----| | 3 | | Realize A
NOT usin
gates (uni
proof) | | Digital T
Kit | rainer | Demonstrate logical universality | | | | 4 | | Realize A
NOT usin
NAND g
(universal | g only | Digital T
Kit | rainer | Demonstrate logical universality | | | | 5 | | Skill Spar
logic-base | | Breadboa | ard | Apply gate logic in simple applications on the Breadboard. | | | | Eval | uati | on Metho | od | | | | | | | Sr.
No. | | valuation
omponent | SEE
(Marks) | CCE
(Marks) | 1 | Description | | | | 1 | Cir | gital
cuit
ilding | 10 | | on the
Realize | the given digital using basic gates trainer kit. e the same using sal gates and the results. | | | | 2 | Sys | mber
stem
sign | | 10 | numbe
on the
demon | a custom r system based given base and strate its sion logic to | | | | | Tot | al | 10 | 10 | | | | | | Boole | ean . | Algebra a | and Simpl | lification | | | | | | Topic | Boo | | | orems, De M
m of Produc | - | laws
POS (Product of | T:12
P:06 | 20% | - K-map techniques: 2, 3, 4-variable simplification Realization of simplified expressions using logic gates # Practical: | Sr.
No. | Practical Task | Tools Used | Outcome | |------------|--|------------------------------|--| | 1 | Verify De Morgan's law | Digital Trainer
Kit | Understand
De Morgan's
validation | | 2 | Simplify given
expressions using 2, 3,
and 4-variable
Karnaugh Maps | Karnaugh Map
Solver | Reduce
expressions
efficiently using
visual grouping | | 3 | Implement simplified logic expressions (from K-map) using Logisim | Logisim | Translate
simplified logic
into working
circuits | | 4 | Analysis and Synthesis
of Boolean Expressions
using Basic Logic
Gates | Virtual lab | Simulate and implement Boolean expressions using basic logic gates in a virtual lab. | | 5 | Realize SOP/POS
expressions using only
NAND/NOR gates | Logisim / IC
Trainer Kits | Practice
hardware-oriente
d implementation | # **Evaluation Method** | Sr. | Evaluation | SEE | CCE | Description | |-----|---|---------|---------|--| | No. | Component | (Marks) | (Marks) | | | 1 | K-Map
Simplification
and Circuit
Realization | 15 | | Simplify a Boolean expression using a K-map. Implement the resulting circuit using basic and universal gates. Generate and verify the truth table. | | 2 | Active Learning
Activity (SOP
to POS
Conversion) | - 10 | Convert the given SOP expression to its equivalent POS form and verify the truth table using simulation tools. Submit a photo on the GMIU portal. | | | |------------|--|--|---|--------------|-----| | | Total | 15 10 | | | | | Topi | cs: Adders Subtractors Code Conversion Decoders and Enco Multiplexers tical: | | | T:12
P:06 | 20% | | Sr.
No. | Practical Task | Tools Used | Learning Outcome | | | | 1 | Design and
implement Half
Adder and Full Ad | Logic
Simulator /
Logic Train
Kit | 0 0 | | | | 2 | Design and
implement Half
Subtractor and Full
Subtractor | Logic
Simulator /
Logic Trair
Kit | 1 1 1 2 | | | | 3 | Implement Binary
Gray and Gray to
Binary code
conversion circuits | Simulator /
Logic Train | | | | | | conversion circuits | TXIT | | | | | 5 | Design and
implement a 4-to
multiplexer using
gates or IC 7415 | 9-1 g | Digital
Trainer Kit /
Logic
Simulator | Demonstrate data selection using multiplexer circuits | | | |----------------|--|--------------|--|--|--------------|-----| | Eval | uation Method | | | | | | | Sr.
No. | Evaluation
Component | SEI
(Mar) | ax a land | Description | | | | 1 | Combinational
Circuit Design | 8 | | Design and implement a given combinational circuit equation using Multisim. Verify the circuit behavior using simulation output or truth tables. | | | | 2 | Circuit Finder | 7 | - | The output and input are given. Judge and simulate the circuit | | | | 3 | Active Learning
Activity (Code
Conversion and
Converter
Designing) | _ | 10 | Build a code conversion circuit using a simulator and upload it to the GMIU portal. | | | | | Total | 15 | 10 | | | | | Seque
Topic | Flip-Flops
Registers
Shift Registers
Counters | | | | T:12
P:06 | 20% | | | Practical Task | | Tools Head | L Looming Outcome | | | | Sr.
No. | rractical Task | | Tools Used | Learning Outcome | | | | 1 | Implement SR, JK
T Flip-Flops using
gates | | Digital
Trainer
Kit, Logic | Understand the working and truth tables of various | | | | | | Simulator | flip-flops | |---|--|--------------------|--| | 2 | Design a 4-bit register using D Flip-Flops | Logic
Simulator | Learn how data is stored using registers | | 3 | Realize Serial-In
Serial-Out (SISO) and
Serial-In Parallel-Out
(SIPO) Shift Registers | Logic
Simulator | Analyze shifting operations using different modes | | 4 | Implement a Counter using T Flip-Flops | Logic
Simulator | Understand the operation of counters and count sequences | | 5 | Design and test a mod-
Counter (e.g.,
Mod-4/Mod-10) | Logic
Simulator | Develop counters
and verify sequences | # **Evaluation Method** | Sr.
No. | Evaluation
Component | SEE
(Marks) | CCE
(Marks) | Description | |------------|--|----------------|----------------|--| | 1 | Design a Sequential Circuit based on the application | 15 | | Design a sequential circuit using flip-flops, registers, shift registers, or counters. Demonstrate circuit behavior through simulation or a trainer kit. | | 2 | Shift Register
Design | _ | 5 | Design and verify
Serial-In Serial-Out
(SISO) and
Serial-In
Parallel-Out (SIPO)
shift registers using
simulation tools. | | 3 | Counter Design
and Testing | _ | 5 | Implement counters
(e.g., Mod-N) and
verify correct count
sequences using a
simulator or trainer | | | Total | 5 10 | | | | |------------|--|---|--|--------------|-----| | Topi | e Machines ics: Basics of State Machines Difference between In Drawing State Trans State Transition Table Applications of State | Mealy and Moore Nition Diagrams | Machines | T:12
P:06 | 20% | | Sr.
No. | Practical Task | Tools Used | Learning Outcome | | | | 1 | Construct a Mealy
state machine using
a state diagram | FSM Simulator
(e.g., Evan
Wallace's FSM
Simulator) | Understand the
structural behavior
and output
dependency of Mealy
models | | | | 2 | Construct a Moore
state machine using
a state diagram | FSM Simulator
(e.g., Evan
Wallace's FSM
Simulator) | Learn to represent
output-independent
FSM using Moore
model diagrams | | | | 3 | Write VHDL code
for a 3-state Mealy
machine | VHDL Compiler / IDE | Gain experience
coding FSM behavior
in hardware
description language | | | | 4 | Write VHDL code
for a 3-state Moore
machine | VHDL Compiler
/ IDE | Understand the coding structure for Moore-type FSM | | | | 5 | Simulate and verify
a simple vending
machine FSM | Digital
Simulator /
Embedded FSM
Toolkits | Apply FSM logic to solve real-world sequential control problems | | | | nalyze a finite state achine and instruct its state agram and insition table. entify whether it llows the Mealy or oore model. diz covering topics ch as state | |---| | ch as state | | achine types,
insition logic, and
al-world
plications. | | ral evaluation sed on Mealy vs pore machines, M plementation in HDL, and plication-based asoning. | | | | SONPH | | Sr.
No. | Evaluation
Component | SEE
(Marks) | CCE
(Marks) | Description | | |------------|-------------------------|----------------|----------------|---|--| | 1 | Report | 5 | - | Project
documentation
with design and
results. | | | 2 | Presentation | 5 | - | A brief
explanation of
project work
and logic. | | | 3 | Model Working | 10 | - | Functional and accurate circuit/model output. | | | 4 | Viva | 10 | | Oral questions on design, logic, and contribution. | | # Suggested Specification Table with Marks: | Distribution of Marks (Revised Bloom's Taxonomy) | | | | | | | | | |--|--------------------|-------------------|-----------------|----------------|--------------|------------|--|--| | Level | Remembrance
(R) | Understanding (U) | Application (A) | Analyze
(N) | Evaluate (E) | Create (C) | | | | Weightage % | 10% | 15% | 20% | 10% | 15% | 30% | | | Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the evaluation may vary slightly from the above table. ### Course Outcome: | After learning the course, the students should be able to: | | | | | |--|---|--|--|--| | CO1 | Convert and operate on different number systems and analyze the functioning of basic and universal logic gates. | | | | | CO2 | Simplify Boolean expressions using Boolean algebra and Karnaugh Maps (K-maps). | | | |-----|---|--|--| | CO3 | Design and simulate various combinational logic circuits, including adders, subtractors, encoders, decoders, and multiplexers. | | | | CO4 | Analyze and construct sequential circuits using flip-flops, registers, shift registers, are counters. | | | | CO5 | Represent and differentiate Mealy and Moore finite state machines (FSMs) using standard notations and implement them using state diagrams and VHDL. | | | ### Instructional Method: The course delivery method will depend on the requirements of the content and the needs of students. The teacher, in addition to the conventional teaching method by the blackboard, may also use any of the tools such as demonstration, role play, quizzes, brainstorming, MOOCs, etc. From the content, 10% of topics are suggested for flipped mode instruction. Students will utilize supplementary resources, including online videos, NPTEL/SWAYAM videos, e-courses, and Virtual Laboratories. The internal evaluation will be done on the basis of the CCE-Continuous and Comprehensive Evaluation. SEE: Semester End Evaluation will be conducted at the end of the semester for evaluation of the performance of students in the laboratory. #### Reference Books - [1] M. M. Mano, Digital Logic and Computer Design. Pearson Education, 2005. - [2] T. L. Floyd, Digital Fundamentals, 10th ed. Pearson Education, 2009. - [3] R. P. Jain, Modern Digital Electronics, 4th ed. McGraw-Hill Education, 2009. - [4] Z. Kohavi and N. K. Jha, Switching and Finite Automata Theory, 3rd ed. Cambridge, U.K.: Cambridge Univ. Press, 2010. - [5] J. F. Wakerly, Digital Design: Principles and Practices, 4th ed. Upper Saddle River, NJ, USA: Pearson Prentice Hall, 2006. - [6] C. H. Roth Jr. and L. L. Kinney, Fundamentals of Logic Design, 7th ed. Boston, MA, USA: Cengage Learning, 2013.