GYANMANJARI INNOVATIVE UNIVERSITY

GYANMANJARI INSTITUTE OF TECHNOLOGY B.Tech.-Mid Semester Examination (MSE)-W2025

Enrollment No.:

Subject Code: BETXX10201 Date: 17/10/2025 Subject Name: Mathematics I Semester: 1st Time: 02:30 to 04:30 **Total Marks: 60** Instructions: 1. Question No. 1 is compulsory. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. Marks Q.1 (a) If $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 3 & 4 \end{bmatrix}$ then find A^{-1} by matrix method 05 (Row Elementary Operation). (b) Find the eigen values of $A = \begin{bmatrix} -1 & 1 & 2 \\ 0 & -2 & 1 \\ 0 & 0 & -3 \end{bmatrix}$ 05 A²
 A⁻¹ 3) A + 2I(c) Find the value of λ so that the equations 2x + y + 2z = 0; x + y + 3z = 0; 10 $4x + 3y + \lambda z = 0$ have a non-trivial solution. Q.2 (a) If $Z = xy^2 + 3xy^4$, $x = at^2$, y = 2at, find $\frac{dz}{dt}$ 05 (b) Discuss the continuity of the function f defined as $f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$ 05 (b) Evaluate: $\lim_{x\to 0} \left\{ \frac{1}{\sin x} - \frac{1}{x} \right\}$ 05 (c) If $x = u \cos v$, $y = u \sin v$ then prove that $\frac{\partial(u,v)}{\partial(x,y)} \cdot \frac{\partial(x,y)}{\partial(u,v)} = 1$ 10

		\mathbf{OR}	
t	(c)	 Expand log (sinx) in power of (x - 2). Using Maclaurian series, expand e^x 	10
Q. 3	(a)	Evaluate: $\int_0^1 \int_0^{2-x} \int_0^{2-x-y} dz dy dx$	05
	(b)	Evaluate: $\iint_R (x+y)dydx$, where R is the region bounded by $x=0, x=2, y=x, y=x+2$	05
	(c)	Evaluate: 1. $\int_{1}^{2} \int_{2}^{3} \int_{0}^{1} xyxdzdxdy$	
		2. $\int_0^{\frac{\pi}{2}} \int_{\frac{\pi}{2}}^x \cos(x+y) dy dx$	10
		OR	
$\mathbf{Q.3}$	(a)	Evaluate the following:	
		1. $\int_0^1 \int_x^{x^2} (x^2 + 3y + 2) dxdy$ 2. $\int_0^1 \int_0^x e^{\frac{x}{y}} dxdy$	05
	(b)	Evaluate: $\iint_R (x^2 + y^2) dA$, by changing the variables, where R is the region lying in the first quadrant and bounded by the hyperbola's $x^2 - y^2 = 9$, $x^2 - y^2 = 1$, $xy = 2$, $xy = 4$.	05
	(c)	Change the order of Integration, evaluate	
		$\int_0^3 \int_y^3 \frac{x}{x^2 + y^2} dx dy.$	10