GYANMANJARI INNOVATIVE UNIVERSITY

Gyanmanjari Institute of Technology

B.Tech.- End Semester Examination (ESE)-Winter -2025

Enrollment No.:	Date: 01/12/2025	
Subject Code: BETCE15313	Semester: 5	
Subject Name: Analysis and Design of Algorithm	Total Marks: 100	
Time: 02:30PM To 05:30PM	Total Marks. 100	
Instructions:	a* at	
1. Question No. 1 is Compulsory.		
2. Make Suitable Assumptions wherever necessary.		
3. Figures to the right indicate full marks.		
	Marks	
Q.1 (a) Write and explain the recurrence relation of Merge Sort.	05	
(b) What are the disadvantages of greedy method over dynamic programming method?	05	
'(c) What is minimum spanning tree? Find minimum spanning tree using Prim's and Kruskal's algorithm of the following graph.	10	
A T F S D E		
Q.2 (a) What do you mean by asymptotic notations? Explain.	05	
(b) If two loops are nested, but the inner loop does not depend on the outer	05	
loop variable, can the complexity still be multiplied (e.g.,O(n2))?		
OR		
(b) Sort the following numbers using counting sort. 1, 3, 2, 4, 1, 2, 4, 3.	05	
(c) Define P, NP, NP-Complete, and NP-Hard problems with van diagram.		
Give examples of each.	10	
OR		
(c) Explain Selection Sort Algorithm and give its best case, worst case and average case complexity with example.	10	
Q.3 (a) Explain shell sort with example. Write the time complexity of shell sort.	05	
(b) Solve the following Knapsack Problem using greedy method. Number of items = 7, knapsack capacity W = 15, weight vector = {2, 3, 5, 7, 1, 4, 1} and profit vector = {10, 5, 15, 7, 6, 18, 3}	05	

,			
	(c)	Write an algorithm for quick sort and derive best case, worst case using	10
	•	divide and conquer technique also trace given data: (3,1,4,5,9,2,6,5)	
		OR	
	(a)	Explain in brief Breadth First Search and Depth First Search Traversal	05
		techniques of a Graph with Example.	
	(b)	What is bounding in the Branch and Bound technique? Why is it	05
		important?	
	(c)	Explain Chained Matrix Multiplication with example.	10
Q.4	(a)	Arrange the data into ascending order using heap sort. Make necessary assumptions if required. 34, 12, 42, 96, 56, 11, 78.	05
	(b)	If the array is almost sorted but with a few elements out of place, which search (linear or binary) is more efficient and why?	05
	(c)	Write the Master theorem. Solve the following recurrence using it: (i) $T(n)=9T(n/3)+n$ (ii) $T(n)=2T(n/4)+1$ (iii) $T(n)=3T(n/4)+n$ logn (iv)	10
		T(n)=3T(n/3)+n	
		OR	
	(a)	Find the Optimal Huffman code for each symbol in following text: ABCCDEBABFFBACBEBDFAAAABCDEEDCCBFEBFCAE	05
	(b)	Find Longest Common Subsequence using Dynamic Programming	05
		Technique with illustration $X=\{A,B,C,B,D,A,B\}$ $Y=\{B,D,C,A,B,A\}$	
	(c)	Solve the following recurrence relation using the substitution method: $T(n)=2T(n/2)+n$, $T(1)=1$	10
Q.5	(a)	Differentiate between Backtracking and Branch and Bound approaches.	05
	(b)	Rabin-Karp: T='3141592653589793', P='26535'.	05
	(c)	a) Define the 0/1 Knapsack Problem. b) Solve the following using Dynamic	10
		Programming: Item = (1, 2, 3, 4), Value = (45, 30, 45, 10), Weight = (3, 5, 9,	
		2). Capacity = 16. Show DP table, chosen items, and total value.	
		OR	
		a) Define TSP and its characteristics. b) Explain how Backtracking is applied to TSP with a recursive function. Mention the base case and pruning condition. c) Why is this approach not scalable?	05
	(b)	Discuss the trade-offs between exact algorithms like Backtracking and	05
		Branch and Bound vs heuristic approaches for NP-hard problems such as TSP. When would you choose one over the other?	
		Finite automata handling overlap: P='aabaa', T='aabaabaabaabaa'.	10
		3,44	